1.read_cam_par( : : CamParFile : CameraParam)
从文件夹中读取相机的内参数。
2.disp_caltab( : : WindowHandle, CalTabDescrFile, CameraParam, CaltabPose, ScaleFac : )
利用相机内外参数,把标定板模型投影到图像平面,显示标定点和连接线,X,Y轴也被显示出来。
3.vector_to_pose( : : WorldX, WorldY, WorldZ, ImageRow, ImageColumn, CameraParam,Method, QualityType : Pose, Quality)
计算世界坐标和图像坐标之间关系的绝对位姿参数。其中世界坐标至少选择不在同一条直线上的三个点。
世界坐标上的点如果在一个平面上,应该选择'planar_analytic' 作为Method的参数。输出位姿和位姿质量。
4.write_pose( : : Pose, PoseFile : )
把位姿写入TXT文件。
5.get_mbutton( : : WindowHandle : Row, Column, Button)
返回鼠标点击的图像点像素坐标,以及鼠标按钮值,左键0,中间键2,右键4.
6.image_points_to_world_plane( : : CameraParam, WorldPose, Rows, Cols, Scale : X,Y)
把图像坐标转化成Z=0平面的世界坐标,输出为世界坐标的X,Y
7.pose_to_hom_mat3d( : : Pose : HomMat3D)
把3D位姿转化成齐次变换矩阵。
8.affine_trans_point_3d( : : HomMat3D, Px, Py, Pz : Qx, Qy, Qz)
进行两个坐标系之间的3D坐标的仿射变换。
/ Qx \ / Px \
| Qy | = HomMat3D * | Py |
| Qz | | Pz |
\ 1 / \ 1 /
9.project_3d_point( : : X, Y, Z, CameraParam : Row, Column)
把3D点映射到图像坐标系,返回图像坐标系中该点的行列坐标。
10.smallest_rectangle2(Regions : : : Row, Column, Phi, Length1, Length2)
返回包含一个区域的最小环绕矩形。
11.gen_measure_rectangle2( : : Row, Column, Phi, Length1, Length2, Width, Height,Interpolation : MeasureHandle)
返回和矩形边垂直的边缘。
12.measure_pairs(Image : : MeasureHandle, Sigma, Threshold, Transition, Select :RowEdgeFirst, ColumnEdgeFirst, AmplitudeFirst, RowEdgeSecond, ColumnEdgeSecond,AmplitudeSecond, IntraDistance, InterDistance)
抽取和矩形边垂直的边缘对。返回各测量对之间的距离。
13.close_measure( : : MeasureHandle : )
删除测量句柄。
14.gen_region_polygon_filled( : Region : Rows, Columns : )
创建多边形填充区域,输出为一个区域。
15.gen_region_polygon_filled( : Region : Rows, Columns : )
提取直线极其宽度,输出为XLD形式数组。
16.hom_mat3d_compose( : : HomMat3DLeft, HomMat3DRight : HomMat3DCompose)
输出两个齐次矩阵的乘积。
17.hom_mat3d_translate_local( : : HomMat3D, Tx, Ty, Tz : HomMat3DTranslate)
相对于新坐标系统,增加一个平移量到齐次矩阵HomMat3D中,输出为新的齐次矩阵。
18.hom_mat3d_rotate_local( : : HomMat3D, Phi, Axis : HomMat3DRotate)
相对于新坐标系统,增加一个绕着某个坐标轴的旋量到齐次矩阵HomMat3D中,输出为新的齐次矩阵。
17.contour_to_world_plane_xld(Contours : ContoursTrans : CameraParam, WorldPose,Scale : )
转换XLD轮廓进入Z=0的世界坐标平面,输出形式为xld_cont(-array) → object
18.get_contour_xld(Contour : : : Row, Col)
返回轮廓点的行列坐标。
19.tuple_mean( : : Tuple : Mean)
返回数组的平均值
20.map_image(Image, Map : ImageMapped : : )
对图像进行校正,输出为校正后的图像。
附:摄像机校正和利用校正后的结果进行测量以及图像校正的程序段
* Attention: * This program reads the interior camera parameters from the file * 'camera_parameters.dat', which, e.g., could be generated by the program * 'camera_calibration_interior.hdev' * ImgPath := '3d_machine_vision/calib/' dev_close_window () dev_open_window (0, 0, 652, 494, 'black', WindowHandle) dev_update_off () dev_set_draw ('margin') dev_set_line_width (1) set_display_font (WindowHandle, 14, 'courier', 'true', 'false') * Read the interior camera parameters from file read_cam_par ('camera_parameters.dat', CamParam) * * Determine the exterior camera parameters and world coodinates from image points * * The exterior camera parameters can be determined from an image, where the * calibration plate is positioned directly on the measurement plane read_image (Image, ImgPath+'calib_11') dev_display (Image) * parameter settings for find_caltab and find_marks_and_pose SizeGauss := 3 MarkThresh := 200 MinDiamMarks := 10 StartThresh := 128 DeltaThresh := 10 MinThresh := 18 Alpha := 0.9 MinContLength := 15 MaxDiamMarks := 100 CaltabName := 'caltab_30mm.descr' find_caltab (Image, Caltab, CaltabName, SizeGauss, MarkThresh, MinDiamMarks) dev_set_color ('green') dev_display (Caltab) * Here, the final camera parameters are already known and can be used instead of the starting values * used in the program 'camera_calibration_interior.hdev' find_marks_and_pose (Image, Caltab, CaltabName, CamParam, StartThresh, DeltaThresh, MinThresh, Alpha, MinContLength, MaxDiamMarks, RCoord, CCoord, PoseForCalibrationPlate) dev_set_color ('red') disp_caltab (WindowHandle, CaltabName, CamParam, PoseForCalibrationPlate, 1) dev_set_line_width (3) disp_circle (WindowHandle, RCoord, CCoord, gen_tuple_const(|RCoord|,1.5)) * caltab_points (CaltabName, X, Y, Z) * camera_calibration (X, Y, Z, RCoord, CCoord, CamParam, InitialPoseForCalibrationPlate, 'pose', CamParamUnchanged, FinalPoseFromCalibrationPlate, Errors) * To take the thickness of the calibration plate into account, the z-value * of the origin given by the camera pose has to be translated by the * thickness of the calibration plate. * Deactivate the following line if you do not want to add the correction. set_origin_pose (PoseForCalibrationPlate, 0, 0, 0.00075, PoseForCalibrationPlate) disp_continue_message (WindowHandle, 'black', 'true') stop () * Alternatively, the exterior camera parameters can be determined from * at least three point correspondances between the WCS and the pixel coordinate system read_image (Image, ImgPath+'caliper_01') dev_display (Image) * Set the world coordinates of three points on the rule X := [0,50,100,80] Y := [5,0,5,0] Z := [0,0,0,0] * Set the respective image plane coordinates of the three points RCoord := [414,227,85,128] CCoord := [119,318,550,448] * disp_cross (WindowHandle, RCoord, CCoord, 6, 0) * create_pose (-50, 25, 400, 0, 0, -30, 'Rp+T', 'gba', 'point', InitialPose) vector_to_pose (X, Y, Z, RCoord, CCoord, CamParam, 'iterative', 'error', FinalPose, Errors) * camera_calibration (X, Y, Z, RCoord, CCoord, CamParam, InitialPose, 'pose', CamParamUnchanged, FinalPose, Errors) write_pose (FinalPose, 'pose_from_three_points.dat') * Now, transform a point measured interactively into the WCS dev_update_window ('on') dev_display (Image) while (1) disp_message (WindowHandle, 'Measure one point: left mouse button', 'window', 12, 12, 'red', 'false') disp_message (WindowHandle, 'Exit measure mode: right mouse button', 'window', 36, 12, 'red', 'false') get_mbutton (WindowHandle, Row, Column, Button) if (Button = 4) break endif dev_display (Image) dev_set_color ('green') disp_cross (WindowHandle, Row, Column, 6, 0) image_points_to_world_plane (CamParam, FinalPose, Row, Column, 1, X1, Y1) disp_message (WindowHandle, 'X = '+X1, 'window', 320, 400, 'red', 'false') disp_message (WindowHandle, 'Y = '+Y1, 'window', 340, 400, 'red', 'false') endwhile * Apply the measure tool and transform the resulting point coordinates * into the WCS dev_set_color ('red') dev_display (Image) * Set the world coordinates of four points defining a ROI for the measure tool ROI_X_WCS := [-2,-2,112,112] ROI_Y_WCS := [0,0.5,0.5,0] ROI_Z_WCS := [0,0,0,0] * Determine the transformation matrix from the WCS into the CCS pose_to_hom_mat3d (FinalPose, CCS_HomMat_WCS) * Transform the point coordintes into the image coordinate system affine_trans_point_3d (CCS_HomMat_WCS, ROI_X_WCS, ROI_Y_WCS, ROI_Z_WCS, CCS_RectangleX, CCS_RectangleY, CCS_RectangleZ) project_3d_point (CCS_RectangleX, CCS_RectangleY, CCS_RectangleZ, CamParam, RectangleRow, RectangleCol) gen_region_polygon_filled (ROI, RectangleRow, RectangleCol) smallest_rectangle2 (ROI, RowCenterROI, ColCenterROI, PhiROI, Length1ROI, Length2ROI) * Create a measure gen_measure_rectangle2 (RowCenterROI, ColCenterROI, PhiROI, Length1ROI, Length2ROI, 652, 494, 'bilinear', MeasureHandle) measure_pairs (Image, MeasureHandle, 0.4, 5, 'all_strongest', 'all', RowEdgeFirst, ColumnEdgeFirst, AmplitudeFirst, RowEdgeSecond, ColumnEdgeSecond, AmplitudeSecond, IntraDistance, InterDistance) close_measure (MeasureHandle) dev_display (Image) disp_message (WindowHandle, 'Measuring the position of the pitch lines', 'window', 450, 25, 'red', 'false') dev_set_color ('green') RowPitchLine := (RowEdgeFirst+RowEdgeSecond)/2.0 ColPitchLine := (ColumnEdgeFirst+ColumnEdgeSecond)/2.0 disp_cross (WindowHandle, RowPitchLine, ColPitchLine, 6, 0) image_points_to_world_plane (CamParam, FinalPose, RowPitchLine, ColPitchLine, 1, X1, Y1) for i := 1 to |X1| by 1 set_tposition (WindowHandle, RowEdgeFirst[i-1]+5, ColumnEdgeFirst[i-1]-20) if (i=|X1|) set_tposition (WindowHandle, RowEdgeFirst[i-1], ColumnEdgeFirst[i-2]) endif write_string (WindowHandle, X1[i-1]$'.3f'+'mm') endfor disp_continue_message (WindowHandle, 'black', 'true') stop () dev_display (Image) * Apply a line extraction and transform the resulting xld contours * into the WCS * Set the world coordinates of four points defining a ROI ROI_X_WCS := [11,11,13,13] ROI_Y_WCS := [4,6,6,4] ROI_Z_WCS := [0,0,0,0] * Transform the point coordinates into the image coordinate system affine_trans_point_3d (CCS_HomMat_WCS, ROI_X_WCS, ROI_Y_WCS, ROI_Z_WCS, CCS_RectangleX, CCS_RectangleY, CCS_RectangleZ) project_3d_point (CCS_RectangleX, CCS_RectangleY, CCS_RectangleZ, CamParam, RectangleRow, RectangleCol) * Visualize the square in the original image disp_polygon (WindowHandle, [RectangleRow,RectangleRow[0]], [RectangleCol,RectangleCol[0]]) dev_display (Image) * create the ROI gen_region_polygon_filled (ROI, RectangleRow, RectangleCol) reduce_domain (Image, ROI, ImageReduced) * Extract the lines lines_gauss (ImageReduced, Lines, 1, 3, 8, 'dark', 'true', 'bar-shaped', 'true') * Adapt the pose of the measurement plane to the tilted plane of the vernier RelPose := [0,3.2,0,-14,0,0,0] pose_to_hom_mat3d (FinalPose, HomMat3D) pose_to_hom_mat3d (RelPose, HomMat3DRel) hom_mat3d_compose (HomMat3D, HomMat3DRel, HomMat3DAdapted) * Alternatively, the adaption can be done using the operators * hom_mat3d_translate_local and hom_mat3d_rotate_local * as shown in the following to lines hom_mat3d_translate_local (HomMat3D, 0, 3.2, 0, HomMat3DTranslate) hom_mat3d_rotate_local (HomMat3DTranslate, rad(-14), 'x', HomMat3DAdapted) hom_mat3d_to_pose (HomMat3DAdapted, PoseAdapted) * Transform the xld contour to the WCS using the adapted pose contour_to_world_plane_xld (Lines, ContoursTrans, CamParam, PoseAdapted, 1) get_contour_xld (ContoursTrans, YOfContour, XOfContour) tuple_mean (XOfContour, MeterReading) dev_display (Lines) disp_message (WindowHandle, 'Meter reading: '+MeterReading$'.3f'+'mm', 'window', 400, 180, 'green', 'false') disp_continue_message (WindowHandle, 'black', 'true') stop () dev_close_inspect_ctrl (YOfContour) dev_close_inspect_ctrl (XOfContour) * Now, transform the whole image WidthMappedImage := 652 HeightMappedImage := 494 dev_display (Image) * First, determine the scale for the mapping * (here, the scale is determined such that in the * surroundings of the points P0 and P1, the image scale of the * mapped image is similar to the image scale of the original image) distance_pp (X[0], Y[0], X[1], Y[1], DistP0P1WCS) distance_pp (RCoord[0], CCoord[0], RCoord[1], CCoord[1], DistP0P1PCS) Scale := DistP0P1WCS/DistP0P1PCS * Then, determine the parameter settings for set_origin_pose such * that the point given via get_mbutton will be in the center of the * mapped image dev_display (Image) disp_message (WindowHandle, 'Define the center of the mapped image', 'window', 12, 12, 'red', 'false') get_mbutton (WindowHandle, CenterRow, CenterColumn, Button1) image_points_to_world_plane (CamParam, FinalPose, CenterRow, CenterColumn, 1, CenterX, CenterY) set_origin_pose (FinalPose, CenterX-Scale*WidthMappedImage/2.0, CenterY-Scale*HeightMappedImage/2.0, 0, PoseNewOrigin) gen_image_to_world_plane_map (Map, CamParam, PoseNewOrigin, 652, 494, WidthMappedImage, HeightMappedImage, Scale, 'bilinear') map_image (Image, Map, ImageMapped) dev_clear_window () dev_display (ImageMapped) * In case, only one image has to be mapped, the operator * image_to_world_plane can be used instead of the operators * gen_image_to_world_plane_map together with map_image. image_to_world_plane (Image, ImageMapped, CamParam, PoseNewOrigin, WidthMappedImage, HeightMappedImage, Scale, 'bilinear')

