深度学习图像标注工具汇总

对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的工作,下面介绍几个图像标注工具:

Labelme

Labelme适用于图像分割任务的数据集制作:

image.png

它来自下面的项目:https://github.com/wkentaro/labelme

该软件实现了最基本的分割数据标注工作,在save后将保持Object的一些信息到一个json文件中,如下:

https://github.com/wkentaro/labelme/blob/master/static/apc2016_obj3.json

同时该软件提供了将json文件转化为labelimage的功能:

image.png

labelImg

Labelme适用于图像检测任务的数据集制作:

image.png

它来自下面的项目:https://github.com/tzutalin/labelImg

其中标签存储功能和“Next Image”、“Prev Image”的设计使用起来比较方便。

该软件最后保存的xml文件格式和ImageNet数据集是一样的。


yolo_mark

yolo_mark适用于图像检测任务的数据集制作:

image.png

它来自于下面的项目:https://github.com/AlexeyAB/Yolo_mark

它是yolo2的团队开源的一个图像标注工具,为了方便其他人使用yolo2训练自己的任务模型。在linux和win下都可运行,依赖opencv库。


Vatic

Vatic适用于图像检测任务的数据集制作:

image.png

它来自下面的项目:http://carlvondrick.com/vatic/

比较特别的是,它可以做视频的标注,比如一个25fps的视频,只需要隔100帧左右手动标注一下物体的位置,最后在整个视频中就能有比较好的效果。这依赖于软件集成的opencv的追踪算法。


Sloth

Sloth适用于图像检测任务的数据集制作:

image.png

它来自下面的项目:

https://github.com/cvhciKIT/sloth

https://cvhci.anthropomatik.kit.edu/~baeuml/projects/a-universal-labeling-tool-for-computer-vision-sloth/

在标注label的时候,该软件可以存储标签,并呈现标注过的图片中的bbox列表。


Annotorious

Annotorious适用于图像检测任务的数据集制作:

image.png

它来自下面的项目:
http://annotorious.github.io/index.html
代码写的相当规范,提供了相应的API接口,方便直接修改和调用。

RectLabel

RectLabel适用于图像检测任务的数据集制作:

image.png

它来自下面的项目:
https://rectlabel.com/
这是一个适用于Mac OS X的软件,而且可以在apple app store中直接下载。

VoTT

VoTT适用于图像检测任务的数据集制作:

image.png

它来自下面的项目:
https://github.com/Microsoft/VoTT/
微软的开源工具,既可以标注视频,也可以标注图片,而且支持已有模型的集成,功能强大。

IAT – Image Annotation Tool

IAT适用于图像分割任务的数据集制作:

image.png

它来自下面的项目:

http://www.ivl.disco.unimib.it/activities/imgann/

比较有特色的是,它支持一些基础形状的选择,比如要分割的物体是个圆形的,那么分割时可以直接选择圆形,而不是用多边形选点。


images_annotation_programme

images_annotation_programme适用于图像检测任务的数据集制作:

image.png

它来自下面的项目:

https://github.com/frederictost/images_annotation_programme


网页版的哦


除此之外,还有很多类似的工具,与上面的工具相比,并没有什么特色了,我们只给出链接,不详细介绍了:


ImageNet-Utils

https://github.com/tzutalin/ImageNet_Utils


labeld

https://github.com/sweppner/labeld


VIA

http://www.robots.ox.ac.uk/~vgg/software/via/


ALT

https://alpslabel.wordpress.com/2017/01/26/alt/


FastAnnotationTool

https://github.com/christopher5106/FastAnnotationTool


LERA

https://lear.inrialpes.fr/people/klaeser/software_image_annotation


————————————————

版权声明:本文为CSDN博主「chaibubble」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/chaipp0607/article/details/79036312


本文出自勇哥的网站《少有人走的路》wwww.skcircle.com,转载请注明出处!讨论可扫码加群:

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

会员中心
搜索
«    2025年4月    »
123456
78910111213
14151617181920
21222324252627
282930
网站分类
标签列表
最新留言
    热门文章 | 热评文章 | 随机文章
文章归档
友情链接
  • 订阅本站的 RSS 2.0 新闻聚合
  • 扫描加本站机器视觉QQ群,验证答案为:halcon勇哥的机器视觉
  • 点击查阅微信群二维码
  • 扫描加勇哥的非标自动化群,验证答案:C#/C++/VB勇哥的非标自动化群
  • 扫描加站长微信:站长微信:abc496103864
  • 扫描加站长QQ:
  • 扫描赞赏本站:
  • 留言板:

Powered By Z-BlogPHP 1.7.2

Copyright Your skcircle.com Rights Reserved.

鄂ICP备18008319号


站长QQ:496103864 微信:abc496103864