原图来自Ihalcon论坛
一个非常小的凹坑位于图中间
- 算法思路 -
利用灰度统计特性进行缺陷检测
原图噪声比较大,进行高斯滤波
计算灰度统计特性
intensity (ImageGauss, ImageGauss, Mean, Deviation)
利用灰度统计特性,检测亮缺陷
亮缺陷检测代码如下
*亮缺陷 threshold(ImageGauss, LightRegion, Mean + 3.5*Deviation, 255) connection (LightRegion, ConnectedRegions) shape_trans (ConnectedRegions, RegionTrans, 'convex') inner_circle(RegionTrans, _, _, Radius2) tuple_find(sgn(Radius2 - max(Radius2) + 0.001), 1, Indices) select_obj (ConnectedRegions, ObjectSelected, Indices +1)
检测暗缺陷
检测暗缺陷代码
*暗缺陷 threshold(ImageGauss, DarkRegion, 0, Mean - 1.5*Deviation) fill_up (DarkRegion, RegionFillUp) connection (RegionFillUp, ConnectedRegions1) select_shape (ConnectedRegions1, SelectedRegions, 'inner_radius', 'and', 2.0122, 4.9109) *亮缺陷与暗缺陷相邻很近,根于此关系,选择暗缺陷 select_shape_proto (SelectedRegions, ObjectSelected, SelectedRegions1, 'distance_dilate', 0, 5)
合并缺陷
本文出自勇哥的网站《少有人走的路》wwww.skcircle.com,转载请注明出处!讨论可扫码加群:

本帖最后由 勇哥,很想停止 于 2020-05-23 22:43:27 编辑 
