演示代码:
#include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespace std; using namespace cv; string convertToString(double d); int main(int argc, char** argv) { Mat base, test1, test2; Mat hsvbase, hsvtest1, hsvtest2; base = imread("e:/5gray.bmp"); if (!base.data) { printf("could not load image...\n"); return -1; } test1 = imread("e:/5.png"); test2 = imread("e:/5_1.png"); //imshow("a", base); //imshow("b1", test1); //imshow("c", test2); cvtColor(base, hsvbase, CV_BGR2HSV); cvtColor(test1, hsvtest1, CV_BGR2HSV); cvtColor(test2, hsvtest2, CV_BGR2HSV); int h_bins = 50; int s_bins = 60; int histSize[] = { h_bins, s_bins }; // hue varies from 0 to 179, saturation from 0 to 255 float h_ranges[] = { 0, 180 }; float s_ranges[] = { 0, 256 }; const float* ranges[] = { h_ranges, s_ranges }; // Use the o-th and 1-st channels int channels[] = { 0, 1 }; MatND hist_base; MatND hist_test1; MatND hist_test2; calcHist(&hsvbase, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false); normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat()); calcHist(&hsvtest1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false); normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat()); calcHist(&hsvtest2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false); normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat()); double basebase = compareHist(hist_base, hist_base, CV_COMP_BHATTACHARYYA); double basetest1 = compareHist(hist_base, hist_test1, CV_COMP_BHATTACHARYYA); double basetest2 = compareHist(hist_base, hist_test2, CV_COMP_BHATTACHARYYA); double tes1test2 = compareHist(hist_test1, hist_test2, CV_COMP_BHATTACHARYYA); printf("test1 compare with test2 correlation value :%f", tes1test2); Mat test12; test2.copyTo(test12); putText(base, convertToString(basebase), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA); putText(test1, convertToString(basetest1), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA); putText(test2, convertToString(basetest2), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA); putText(test12, convertToString(tes1test2), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA); namedWindow("b", CV_WINDOW_AUTOSIZE); namedWindow("t1", CV_WINDOW_AUTOSIZE); namedWindow("t2", CV_WINDOW_AUTOSIZE); imshow("b", base); imshow("t1", test1); imshow("t2", test2); imshow("12", test12); waitKey(0); return 0; } string convertToString(double d) { ostringstream os; if (os << d) return os.str(); return "invalid conversion"; }
(三种原图base、test1、test2)
(CV_COMP_INTERSECT 算法的比较,b为图base和图base比较,t1是图test1和图base、t2是图test2和图base、12是图test1和图test2比较)
(CV_COMP_CHISQR 算法的比较)
(CV_COMP_CORREL算法的比较)
(CV_COMP_BHATTACHARYYA 算法的比较)
代码说明:
直方图比较方法-概述
对输入的两张图像计算得到直方图H1与H2,归一化到相同的尺度空间然后可以通过计算H1与H2的之间的距离得到两个直方图的相似程度进
而比较图像本身的相似程度。Opencv提供的比较方法有四种:
Correlation 相关性比较
Chi-Square 卡方比较
Intersection 十字交叉性
Bhattacharyya distance 巴氏距离
下面依次说明各种算法的数学原理。
直方图比较方法-相关性计算(CV_COMP_CORREL)
直方图比较方法-卡方计算(CV_COMP_CHISQR)
直方图比较方法-十字计算(CV_COMP_INTERSECT)
H1,H2分别表示两个图像的直方图数据
直方图比较方法-巴氏距离计算(CV_COMP_BHATTACHARYYA )
H1,H2分别表示两个图像的直方图数据
相关API
首先把图像从RGB色彩空间转换到HSV色彩空间cvtColor
计算图像的直方图,然后归一化到[0~1]之间calcHist和normalize;
使用上述四种比较方法之一进行比较compareHist
compareHist( InputArray h1, // 直方图数据,下同 InputArray H2, int method// 比较方法,上述四种方法之一 )
---------------------
作者:hackpig
来源:www.skcircle.com
版权声明:本文章代码及资料部分或全部来自贾志刚老师的视频,勇哥只是在个人理解的基础上做学习笔记,转载请附上博文链接!

